Robust Low Rank Kernel Embeddings of Multivariate Distributions
نویسندگان
چکیده
Kernel embedding of distributions has led to many recent advances in machine learning. However, latent and low rank structures prevalent in real world distributions have rarely been taken into account in this setting. Furthermore, no prior work in kernel embedding literature has addressed the issue of robust embedding when the latent and low rank information are misspecified. In this paper, we propose a hierarchical low rank decomposition of kernels embeddings which can exploit such low rank structures in data while being robust to model misspecification. We also illustrate with empirical evidence that the estimated low rank embeddings lead to improved performance in density estimation.
منابع مشابه
Subspace Embeddings for the Polynomial Kernel
Sketching is a powerful dimensionality reduction tool for accelerating statistical learning algorithms. However, its applicability has been limited to a certain extent since the crucial ingredient, the so-called oblivious subspace embedding, can only be applied to data spaces with an explicit representation as the column span or row span of a matrix, while in many settings learning is done in a...
متن کاملKernel Embeddings of Conditional Distributions
Many modern applications of signal processing and machine learning, ranging from computer vision to computational biology, require the analysis of large volumes of high-dimensional continuous-valued measurements. Complex statistical features are commonplace, including multi-modality, skewness, and rich dependency structures. Such problems call for a flexible and robust modeling framework that c...
متن کاملWasserstein Distance Measure Machines
This paper presents a distance-based discriminative framework for learning with probability distributions. Instead of using kernel mean embeddings or generalized radial basis kernels, we introduce embeddings based on dissimilarity of distributions to some reference distributions denoted as templates. Our framework extends the theory of similarity of Balcan et al. (2008) to the population distri...
متن کاملKernel Choice and Classifiability for RKHS Embeddings of Probability Distributions
Embeddings of probability measures into reproducing kernel Hilbert spaces have been proposed as a straightforward and practical means of representing and comparing probabilities. In particular, the distance between embeddings (the maximum mean discrepancy, or MMD) has several key advantages over many classical metrics on distributions, namely easy computability, fast convergence and low bias of...
متن کاملMonte Carlo Filtering Using Kernel Embedding of Distributions
Recent advances of kernel methods have yielded a framework for representing probabilities using a reproducing kernel Hilbert space, called kernel embedding of distributions. In this paper, we propose a Monte Carlo filtering algorithm based on kernel embeddings. The proposed method is applied to state-space models where sampling from the transition model is possible, while the observation model ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013